Skip to main content
Log in

Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method was developed with the aim to unambiguously identify a large number of lipid species from multiple lipid classes in human plasma. The optimized RP-UHPLC/MS method employed the C18 column with sub-2-μm particles with the total run time of 25 min. The chromatographic resolution was investigated with 42 standards from 18 lipid classes. The UHPLC system was coupled to high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) measuring full-scan and tandem mass spectra (MS/MS) in positive- and negative-ion modes with high mass accuracy. Our identification approach was based on m/z values measured with mass accuracy within 5 ppm tolerance in the full-scan mode, characteristic fragment ions in MS/MS, and regularity in chromatographic retention dependences for individual lipid species, which provides the highest level of confidence for reported identifications of lipid species including regioisomeric and other isobaric forms. The graphs of dependences of retention times on the carbon number or on the number of double bond(s) in fatty acyl chains were constructed to support the identification of lipid species in homologous lipid series. Our list of identified lipid species is also compared with previous publications investigating human blood samples by various MS-based approaches. In total, we have reported more than 500 lipid species representing 26 polar and nonpolar lipid classes detected in NIST Standard reference material 1950 human plasma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BPI:

Base peak intensity

CAR:

Acylcarnitine

CE:

Cholesteryl ester

Cer:

Ceramide

CN:

Carbon number

DB:

Double bond

DG:

Diacylglycerol

DI:

Direct infusion

ECN:

Equivalent carbon number

ESI:

Electrospray ionization

FA:

Fatty acid

GlcCer:

Glucosylceramide

GM3:

Monosialodihexosylganglioside

HexCer:

Hexosylceramide

Hex2Cer:

Dihexosylceramide

Hex3Cer:

Trihexosylceramide

Hex4Cer:

Tetrahexosylceramide

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

Chol:

Cholesterol

IS:

Internal standard

LacCer:

Lactosylceramide

LPC:

Lysophosphatidylcholine

LPE:

Lysophosphatidylethanolamine

LPG:

Lysophosphatidylglycerol

LPI:

Lysophosphatidylinositol

LPS:

Lysophosphatidylserine

MG:

Monoacylglycerol

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NP:

Normal-phase

-O:

Alkyl bond

-P:

Plasmalogen

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

RIC:

Reconstructed ion current

RP:

Reversed-phase

SM:

Sphingomyelin

TG:

Triacylglycerol

tR :

Retention time

UHPLC:

Ultrahigh-performance liquid chromatography

UHPSFC:

Ultrahigh-performance supercritical fluid chromatography

QTOF:

Quadrupole-time-of-flight

References

  1. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610.

    Article  CAS  PubMed  Google Scholar 

  2. Arneth B, Arneth R, Shams M. Metabolomics of type 1 and type 2 diabetes. Int J Mol Sci. 2019;20:2467.

    Article  PubMed Central  Google Scholar 

  3. Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huynh K, Barlow CK, Jayawardana KS, Weir JM, Mellett NA, Cinel M, et al. High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors. Cell Chem Biol. 2019;26:71–84.

    Article  CAS  PubMed  Google Scholar 

  5. Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37:1967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tonks KT, Coster AC, Christopher MJ, Chaudhuri R, Xu A, Gagnon-Bartsch J, et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity. 2016;24:908–16.

    Article  CAS  PubMed  Google Scholar 

  7. van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, et al. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev. 2020;159:232–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: mass spectrometric quantitation of lipids in cancer research. TrAC - Trends Anal Chem. 2019;120:115480.

    Article  Google Scholar 

  9. Wang J, Wang C, Han X. Tutorial on lipidomics. Anal Chim Acta. 2019;1061:28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wolrab D, Jirásko R, Cífková E, Höring M, Mei D, Peterka O, et al. Lipidomic profiling of human serum enables detection of pancreatic cancer 1. Nat Com. 2021; revision; preprint available at https://www.medrxiv.org/content/10.1101/2021.01.22.21249767v1

  11. LIPID MAPS. LIPID MAPS Lipidomics Gateway. 2021 (accessed 5.5.2021). https://lipidmaps.org/

  12. Holčapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal Chem. 2018;90:4249–57.

    Article  PubMed  Google Scholar 

  13. Hsu FF. Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view. Anal Bioanal Chem. 2018;410:6387–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sales S, Graessler J, Ciucci S, Al-Atrib R, Vihervaara T, Schuhmann K, et al. Gender, contraceptives and individual metabolic predisposition shape a healthy plasma lipidome. Sci Rep. 2016;6:27710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev. 2012;31:134–78.

    Article  CAS  PubMed  Google Scholar 

  16. Čajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC – Trends Anal Chem. 2014;61:192–206.

    Article  Google Scholar 

  17. Triebl A, Hartler J, Trötzmüller MC, Köfeler H. Lipidomics: prospects from a technological perspective. Biochim Biophys Acta Mol Cell Biol Lipids. 1862;2017:740–6.

    Google Scholar 

  18. Cífková E, Holčapek M, Lísa M, Vrána D, Melichar B, Študent V. Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. J Chromatogr B. 2015;1000:14–21.

    Article  Google Scholar 

  19. Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Holčapek M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography–mass spectrometry and hydrophilic interaction liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2020;412:75–2388.

    Article  Google Scholar 

  20. Rampler E, Schoeny H, Mitic BM, el Abiead Y, Schwaiger M, Koellensperger G. Simultaneous non-polar and polar lipid analysis by on-line combination of HILIC, RP and high resolution MS. Analyst. 2018;143:1250–8.

    Article  CAS  PubMed  Google Scholar 

  21. Dispas A, Jambo H, André S, Tyteca E, Hubert P. Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques. Bioanalysis. 2018;10:107–24.

    Article  CAS  PubMed  Google Scholar 

  22. Lísa M, Holčapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography-mass spectrometry. Anal Chem. 2015;87:7187–95.

    Article  PubMed  Google Scholar 

  23. Chocholoušková M, Jirásko R, Vrána D, Gatěk J, Melichar B, Holčapek M. Reversed phase UHPLC/ESI-MS determination of oxylipins in human plasma: a case study of female breast cancer. Anal Bioanal Chem. 2019;411:1239–51.

    Article  PubMed  Google Scholar 

  24. Ovčačíková M, Lísa M, Cífková E, Holčapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2016;1450:76–85.

    Article  PubMed  Google Scholar 

  25. Damen CWN, Isaac G, Langridge J, Hankemeier T, Vreeken RJ. Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res. 2014;55:1772–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamada T, Uchikata T, Sakamoto S, Yokoi Y, Fukusaki E, Bamba T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J Chromatogr A. 2013;1292:211–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fauland A, Köfeler H, Trötzmüller M, Knopf A, Hartler J, Eberl A, et al. A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J Lipid Res. 2011;52:2314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sandra K, Pereira AS, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 1217:4087–99.

  29. Lísa M, Holčapek M. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 2008;1198–1199:115–30.

    Article  PubMed  Google Scholar 

  30. Nikolova-Damyanova B. Retention of lipids in silver ion high-performance liquid chromatography: facts and assumptions. J Chromatogr A. 2009;1216:1815–24.

    Article  CAS  PubMed  Google Scholar 

  31. Lísa M, Denev R. Holčapek M (2013) Retention behavior of isomeric triacylglycerols in silver-ion HPLC: effects of mobile phase composition and temperature. J Sep Sci. 2013;36:2888–900.

    Article  PubMed  Google Scholar 

  32. Seon HL, Williams M v, Blair IA. Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 2005;77:141–57.

    Article  Google Scholar 

  33. Lísa M, Holčapek M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal Chem. 2013;85:1852–9.

    Article  PubMed  Google Scholar 

  34. Holčapek M, Jandera P, Fischer J, Prokeš B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A. 1999;858:13–31.

    Article  PubMed  Google Scholar 

  35. Holčapek M, Ovčačíková M, Lísa M, Cífková E, Hájek T. Continuous comprehensive two-dimensional liquid chromatography–electrospray ionization mass spectrometry of complex lipidomic samples. Anal Bioanal Chem. 2015;407:5033–43.

    Article  PubMed  Google Scholar 

  36. Murphy RC Tandem mass spectrometry of lipids: molecular analysis of complex lipids. 1st ed. Cambridge; Royal Society of Chemistry; 2014.

  37. Lísa M, Cífková E, Holčapek M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J Chromatogr A. 2011;1218:5146–56.

    Article  PubMed  Google Scholar 

  38. Hořejší K, Jirásko R, Chocholoušková M, Wolrab D, Kahoun D, Holčapek M. Comprehensive identification of glycosphingolipids in human plasma using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. Metabolites. 2021;11:140–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Merrill AH, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 2005;36:207–24.

    Article  CAS  PubMed  Google Scholar 

  40. Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma1. J Lipid Res. 2010;51:3299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in frozen human plasma. J Lipid Res. 2017;58:2275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Mužáková V, Študentová H, et al. Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS. Anal Chim Acta. 2020;1137:74–84.

    Article  CAS  PubMed  Google Scholar 

  44. Liebisch G, Ahrends R, Arita M, Arita M, Bowden JA, Ejsing CS, et al. Lipidomics needs more standardization. Nat Metab. 2019;1:745–7.

    Article  Google Scholar 

  45. Liebisch G, Ejsing CS, Ekroos K. Identification and annotation of lipid species in metabolomics studies need improvement. Clin Chem. 2015;61:1542–4.

    Article  CAS  PubMed  Google Scholar 

  46. Kofeler HC, Eichmann TO, Ahrends R, Bowden JA, Danne-Rasche N, Fedorova M, et al. Nat Com. 2021; revision; preprint available at https://zenodo.org/record/4672232#.YJ5c0odxeUl

Download references

Funding

This work was supported by the grant project no. 21-20238S funded by the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Holčapek.

Ethics declarations

Ethics approval

The ethical approval is not needed for this study, because biological samples of patients or clinical data are not used in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection celebrating ABCs 20th Anniversary.

Supplementary Information

ESM 1

(PDF 419 kb)

ESM 2

(XLSX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaňková, Z., Peterka, O., Chocholoušková, M. et al. Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal Bioanal Chem 414, 319–331 (2022). https://doi.org/10.1007/s00216-021-03492-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03492-4

Keywords

Navigation